初中数学方程公式

发布时间:2016-11-27 来源: 数学 点击:

篇一:初中数学公式大全

初中数学常用的概念、公式和定理

1. 整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 如:-3,,0.231,0.737373…,丨a丨=a;a≤

0,.无限不环循小数叫做无理数..如:π,--,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2. 绝对值:a≥

如:丨-丨=丨a丨=-a. ;丨3.14-π丨=π-3.14.

3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.

4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:-40700=-4.07×105,0.000043=4.3×10-5.

5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.

如:已知=0.4858,则=48.58;已知=1.558,则=0.1588.

6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多-项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项 分别除以这个单项式.

7.幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤()n=n.⑥a-n=n,特别:()-n=()n.⑦a0=1(a≠0).

如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2=3.14)0=1,(-)0=1. =,()-2=()2=,(-

8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-

b)2=(a+b)2-4ab.

9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.

10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.

11.二次根式:①(

如:①(3)2=45.②)2=a(a≥0),②=丨a丨,③=-a=.④×,④=(a>0,b≥0). =6.③a<0时,的平方根=4的平方根=±2.

,其中=b2-4ac叫做根-12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=

的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当-

Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则

x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一

元二次方程是x2-(a+b)x+ab=0.

13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如

:-

的方程组,用代入法解;形如:

解这两个方程组.

14.不等式两边都乘以或除以同一个负数,不等号要改变方向.

15.平面直角坐标系:①各限象内点的坐标如图所示.

②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.

③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);

关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);

关于原点对称的两个点,横坐标、纵坐标都互为相反数.

16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0

时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.

17.反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反.

18.二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线(c是抛物线与y轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-. 的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别特别:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是直线x=h.

注意:求解析式的设法①已知三个点的坐标,则设为一般形式y=ax2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x-h)2+k;③已知抛物线与x轴的两个交点坐标(x1,0)和

(x2,0),则设为交点式y=a(x-x1)(x-x2).

19.抛物线与x轴的位置关系:对于抛物线y=ax2+bx+c①Δ<0时,它与x没有交点.②Δ=0

时,它与x轴只有一个交点(与x轴相切).③Δ>0时,它与x轴有两个交点(x1,0)和(x2,0),其中x1和x2是方程ax2+bx+c=0的两个根.

20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.

(2)公式:设有n个数x1,x2,…,xn,那么:

①平均数=(x1+x2+…+xn).②方差S2=[(x1-)2+(x2-)2+…+(xn-)2.(是整数时用)

③S2=[(x12+x22+…+xn2)-n()2].注:各数据的数位较少或平均数是分数时,用此公式.

④若将n个数x1,x2,…,xn各减去一个适当的数a,得到一组新数x1,,x2,,…,xn,,那么原来那

组数的方差S2=这组新数的方差,平均数=a+

(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾 法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总 个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.

21.锐角三角函数:①设∠A是RtΔ的任一锐角,则∠A的正弦:sinA=

弦:cosA=,∠A的正切:tanA=,∠A的余切:cotA=,∠A的余. ,.方差越大,这组数据的波动就越大.通常用样本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准

并且sinA=cosB,tgA=ctgB,tgActgA=1,sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小.

②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA. ③特殊角的三角函数值:sin300=cos600=,sin450=cos450=

cos900=0,sin900=cos00=1,tg300=ctg600=

,tg00=ctg900=0.

④斜坡的坡度i==.设坡角为α,则i=tgα=. ,sin600=cos300=,sin00= ,tg450=ctg450=1,tg600=ctg300

=-

22.三角形:(1)在一个三角形中:等边对等角,等角对等边.

(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在RtΔ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.

②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一

半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半.(6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.

23.四边形:(1)n边形的内角和等于(n-2)1800,外角和等于3600.

(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.

(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.

(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.

(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.

(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.

(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.

(8)梯形的中位线平行于两底并且等于两底之和的一半.

(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.

24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.

25.平行切割定理:①如图1,DE∥

BC=

=. .

2②如图2,若AB∥CD∥EF则2=

2,26.射影定理:如图3,ΔABC中,若∠ACB=90, CD⊥AB,则:①AC=AD·AB.②BC=BD·BA.③AD=DA·

DB.

27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的

任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;

⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.

28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:

①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r直线L和⊙O相离.

(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.

(5)RtΔ的内切圆的半径R内=,任意多边形的内切圆的半径R内=.

(6)圆外切四边形的一组对边的和等于另一组对边的和.

29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r

②d=R+r

⑤d<R-r两圆外切.③R-r<d<R+r(R≥r)两圆内含. 两圆相交.④d=R-r两圆外离. 两圆内切.

30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连

心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.

31.各顶点等分圆周

=外角=度. 正n边形各边相等,各角相等,且每个内角=度,中心角

32.面积公式:①S正Δ=×(边长).②S平行四边形=底×高.③S菱形=底×高=×(对角2

线的积)

④S圆=πR.⑤C圆周长=2πR.⑥弧长L=

高.

⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=

2.⑦S扇形==LR.⑧S圆柱侧=底面周长×(如上图).

篇二:初中数学公式大全

人教版初中数学知识点总结

目录

七年级数学(上)知识点.......................................................................... 错误!未定义书签。

第一章 有理数 .................................................................................... 错误!未定义书签。 第二章 整式的加减 .......................................................................... 错误!未定义书签。 第三章 一元一次方程 ........................................................................ 错误!未定义书签。 第四章 图形的认识初步 .................................................................... 错误!未定义书签。 七年级数学(下)知识点.......................................................................... 错误!未定义书签。

第五章相交线与平行线 ................................................................ 错误!未定义书签。 第六章 平面直角坐标系 .................................................................. 错误!未定义书签。 第七章 三角形 .................................................................................. 错误!未定义书签。 第八章 二元一次方程组 .................................................................. 错误!未定义书签。 第九章 不等式与不等式组 .............................................................. 错误!未定义书签。 第十章 数据的收集、整理与描述 .................................................. 错误!未定义书签。 八年级数学(上)知识点.......................................................................... 错误!未定义书签。

第十一章 全等三角形 ...................................................................... 错误!未定义书签。 第十二章 轴对称 .............................................................................. 错误!未定义书签。 第十三章 实数 .................................................................................. 错误!未定义书签。 第十四章 一次函数 .......................................................................... 错误!未定义书签。 第十五章 整式的乘除与分解因式 .................................................. 错误!未定义书签。 八年级数学(下)知识点.......................................................................... 错误!未定义书签。

第十六章 分式 .................................................................................. 错误!未定义书签。 第十七章 反比例函数 ...................................................................... 错误!未定义书签。 第十八章 勾股定理 ............................................................................ 错误!未定义书签。 第十九章 四边形 ................................................................................ 错误!未定义书签。 第二十章 数据的分析 ...................................................................... 错误!未定义书签。 九年级数学(上)知识点.......................................................................... 错误!未定义书签。

第二十一章 二次根式 ...................................................................... 错误!未定义书签。 第二十二章 一元二次根式 .............................................................. 错误!未定义书签。 第二十三章 旋转 .............................................................................. 错误!未定义书签。 第二十四章 圆 .................................................................................. 错误!未定义书签。 第二十五章 概率 .............................................................................. 错误!未定义书签。 九年级数学(下)知识点.......................................................................... 错误!未定义书签。

第二十六章 二次函数 ...................................................................... 错误!未定义书签。 第二十七章 相似 .............................................................................. 错误!未定义书签。 第二十八章 锐角三角函数 .............................................................. 错误!未定义书签。 第二十九章 投影与视图 .................................................................. 错误!未定义书签。

初中数学总复习资料

㈠数与代数

⒈数与式

⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数

⑷绝对值:│a│= a(a≥0)│a│=-a(a<0) ⑸倒数 ⑹指数

① 零指数:a=1(a≠0)②负整指数:(a≠0,n是正整数) ⑺完全平方公式:(a?b)

2

?a2?2ab?b2

2

2

⑻平方差公式:(a+b)(a-b)=a?b ⑼幂的运算性质: ①a·a=a

m

n

m?n

②a÷a=a

mnm?n

③(a

mn

)=a

mn

anan

④(ab)=ab ⑤()?n⑽

bb

n

n

n

科学记数法:a?10(1≤a<10,n是整数) ⑾算术平方根、平方根、立方根、 ⑿

⒉方程与不等式 ⑴一元二次方程 ①定义及一般形式:ax②解法: 1.直接开平方法. 2.配方法 3.公式法:x1,24.因式分解法.

③根的判别式:

2

n

acma?c???ma

????(b?d???n?0)?等比性质:? bdnb?d???nb

?bx?c?0(a?0)

?b?b2?4ac2

?(b?4ac?0)

2a

??b2?4ac>0,有两个解。 ??b2?4ac<0,无解。

??b2?4ac=0,有1个解。

④维达定理:x1?x2??⑤常用等式:x1⑥应用题

1.行程问题:相遇问题、追及问题、水中航行:v顺2.增长率问题:起始数(1+X)=终止数

3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。 4.几何问题

⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程

②将增根带入化间后的整式方程,求出参数的值。

⑶不等式的性质 ①a>b → a+c>b+c ②a>b → ac>bc(c>0) ③a>b → ac<bc(c<0) ④a>b,b>c → a>c ⑤a>b,c>d → a+c>b+d. ⒊函数 ⑴一次函数

①定义:y=kx+b(k≠0)

②图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

③性质:

k>0,直线经过一、三象限,y随x的增大而增大。 k<0,直线经过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限。 当b=0时,直线通过原点。

当b<0时,直线必通过三、四象限。

④图象的四种情况:

2

bc

,x1?x2? aa

2

?x2?(x1?x2)2?2x1x2(x1?x2)2?(x1?x2)2?4x1x2

?船速?水速;v逆?船速?水速

⑵正比例函: ①定义:y=kx(k≠0)

②图象:直线(过原点) ⑶反比例函数 ①定义:y?

k

?kx?1 (k≠0). x

②图象:双曲线(两支)

③性质:

k>0时,两支曲线分别位于第一、三象限,y的值随x值的增大而减小。 k<0时,两支曲线分别位于第二、四象限,y的值随x值的增大而增大。; ④两支曲线无限接近于坐标轴但永远不能到达坐标轴。

⑷二次函数. ①定义:

y?a(x?h)2?k(a?0)(顶点式)y?ax2?bx?c(a?0)(一般式)

②图象:抛物线

y?ax2?bx?c(a?0) 顶点: y?a(x?h)2?k(a?0)顶点:(h,k)

③性质:

⑴当a>0时,开口向上;当a<0时,开口向下。|a|越大,则抛物线的开口越小。

⑵当a与b同号时(ab>0),对称轴在y轴左边;当a与b异号时(ab<0),对称轴在y轴右边;当b=0时,对称轴在y轴。(左同右异)

⑶当c>0时,与y轴交于正半轴;当c<0时,与y轴交于负半轴;当c=0时,与y轴交于原点。

④平行移动的规律:

当h>0时,y=ax向右平行移动h个单位得到y=a(x-h) 当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,y=ax向右平行移动h个单位,再向上移动k个单位,得到y=a(x-h) +k 当h>0,k<0时,y=ax向右平行移动h个单位,再向下移动|k|个单位,得到y=a(x-h) +k 当h<0,k>0时,y=ax向左平行移动|h|个单位,再向上移动k个单位,得到y=a(x-h) +k 当h<0,k<0时,y=ax向左平行移动|h|个单位,再向下移动|k|个单位,得到y=a(x-h)^2+k

㈡空间与图形

⒈三角形

⑴面积公式:底乘以高除以2

⑵“四心”:

①垂心:三角形三条高的交点。

②内心:三角形三条内角平分线的交点,即内接圆的圆心。

③重心:三角形三条中线的交点。

④外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。

⑶三角形边与边的关系:

两边之和大于第三边。(较短的两条边) 两边之差小于第三边。(最长的边和最小的边)

⑷三角形内角和、外角与内角的关系: 三角形内角和为180度。

三角形的一个外角等于和它不相邻的两个内角和。 三角形的一个外角大于任何一个和它不相邻的内角。 ⑸证明

篇三:人教版初中数学公式大全

人教版初中数学公式大全

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交d<r

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条

初中数学方程公式

割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上

135①两圆外离d>R+r ②两圆外切d=R+r

③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

147完全平方公式:(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

148平方差公式:(a+b)(a-b)=a^2-b^2

相关热词搜索:方程 公式 初中数学 初中所有方程公式 初中数学常用公式定理 初中数学公式大全

热点文章阅读

版权所有 小龙文挡网 www.xltkwj.com